
会员
Python程序设计:人工智能案例实践
(美)保罗·戴特尔 哈维·戴特尔更新时间:2021-08-13 17:17:52
最新章节:索引开会员,本书免费读 >
本书共16章。第1~10章介绍Python编程,涉及人工智能、基本描述统计、集中趋势和分散度量、模拟、静态和动态可视化、使用CSV文件、用于数据探索和数据整理的Pandas、时间序列和简单线性回归。第11~16章提供多种实践案例研究,涉及自然语言处理、Twitter数据挖掘、IBMWatson认知计算、包含分类和回归的有监督机器学习、聚类无监督机器学习、卷积神经网络深度学习、递归神经网络深度学习、包含Hadoop/Spark/NoSQL/物联网的大数据等。
品牌:机械工业出版社
译者:王恺 王刚 于名飞 徐夏 李涛
上架时间:2021-03-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
Python程序设计:人工智能案例实践最新章节
查看全部- 索引
- 16.9 小结
- 16.8 物联网和仪表板
- 16.7 Spark流:使用pyspark-notebook Docker堆栈计算Twitter主题标签
- 16.6 Spark
- 16.5 Hadoop
- 16.4 案例研究:MongoDB JSON文档数据库
- 16.3 NoSQL和NewSQL大数据数据库简述
- 16.2 关系数据库和结构化查询语言
- 16.1 简介
(美)保罗·戴特尔 哈维·戴特尔
主页
同类热门书
最新上架
- 会员
社交网络信息传播模型、算法及应用
本书系统地阐述信息传播问题中所涉及的各种传播模型、数学优化方法以及计算方法等,并通过对大量信息传播的实际问题进行了建模与分析。该著作将为人工智能、大数据、管理科学、运筹学、人文社会科学等领域开展相关研究的本科生、研究生以及学者提供重要的参考。计算机16万字 - 会员
人,伦理,机器人:一本孩子写给孩子的书
本书围绕“公平、隐私与保障、可靠与安全、包容、负责、透明”六个人工智能需要遵循的原则,诠释当代青少年对负责任的人工智能的认识和思考。计算机7.1万字 - 会员
秒懂AI提问:让人工智能成为你的效率神器
我们在运用AI的时候,有时得不到自己想要的回答,于是责怪AI不够智能。我们容易忽略的是,AI的回答质量往往取决于提问的质量。《秒懂AI提问:让人工智能成为你的效率神器》系统地介绍了20种向AI提问的有效方法,用这些方法可以让AI给出高质量的回答。在介绍提问方法时,本书紧扣日常工作和生活,并通过对比让读者直观感受不同提问方法的效果,最后引出更多场景下的应用,让读者真正学以致用。《秒懂AI提问:让人工计算机5.4万字 - 会员
预训练语言模型:方法、实践与应用
近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字 - 会员
人工智能算法基础
本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、计算机0字 大模型垂直领域低算力迁移:微调、部署与优化
本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你计算机13.7万字- 会员
巧用ChatGPT轻松学演讲
本书分为23章,从基础的演讲知识入手,到演讲稿的写作技巧,再到指导读者如何有效地利用ChatGPT进行演讲稿写作和演讲练习,最后通过实际的行业案例进行深入的学习和实战应用。使读者不仅可以学习演讲的相关知识,还能对如何利用ChatGPT进行有效的演讲有所理解。计算机19.1万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字 - 会员
深度学习与大模型基础
本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。计算机23.6万字