![车用同步电机噪声与振动](https://wfqqreader-1252317822.image.myqcloud.com/cover/853/42637853/b_42637853.jpg)
2.2 连续系统的振动
2.2.1 薄板的振动
弹性薄板是二维弹性体,可以承受弯矩。设薄板的中性面在变形前为平面。建立(x,y,z)坐标系,(x,y)坐标面与变形前的中性面重合,z轴垂直向下(见图2.1)。薄板受到沿z轴的分布力f(x,y,t)作用。在中性面上任意点处取长宽分别为dx和dy的矩形微元体。将与x轴和y轴正交的横截面分别记为Sx和Sy,假设弯曲变形后截面仍保持平面。将板的中性面法线视为截面Sx和Sy的交线,则弯曲变形后必保持直线。弯曲变形后,中性面上各点产生沿z轴的挠度w(x,y,t),且引起截面Sx和Sy的偏转。设截面Sx绕y轴的偏角为θx,截面Sy绕x轴的偏角为θy。在小挠度的前提下,偏角θx和θy可用挠度w(x,y,t)对x轴和y轴的变化率代替:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_07.jpg?sign=1739389557-ZYYhBuCkWN73YmEK0W5NA4zTQMmbBCb6-0-33d227f2f115f6e051d1cd47b80d0c6f)
图2.1 弹性薄板
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_08.jpg?sign=1739389557-beiSgHZAcf1nA22aSZKWpfDdh4pqnang-0-2302ebd19c273f54c9032edd21ed6206)
则截面上坐标为z的任意点产生沿x轴的弹性位移u和沿y轴的弹性位移v分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_09.jpg?sign=1739389557-lRsYWLv3tgUQ7bwwps8oiAUvMiNhyvQB-0-d17e4d0848a50655233a3ab420bd90eb)
位移u和v对x轴和y轴的变化率导致微元体沿x轴和y轴的正应变εx和εy:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_01.jpg?sign=1739389557-uVbNQQHs37CwpX1TD63sSAXx4LhFInqp-0-8da7f99a21236849cd272844086a9f1c)
除正应变以外,位移u对y轴的变化率和位移v对x轴的变化率导致微元体在(x,y)平面内的切应变γxy为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_02.jpg?sign=1739389557-cRkQl19GnGNrUe09A3tZQfHw5x8N8wwZ-0-758181f3f9ff8bb40dfc24c90c3a084b)
代入广义胡克定律计算正应力和切应力:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_03.jpg?sign=1739389557-NlKdYb0PXqGnt1u7z0cJHzqYiBD9KgWY-0-4c3a50e978a1abe1184fc3a8b60e1b74)
σx、σy、τxy在截面Sx和Sy上的积分为零。设、
分别为截面Sx和Sy上沿z轴单位长度的剪力,板的厚度为h,密度为ρ。根据达朗贝尔原理,考虑微元体的惯性力,列出微元体沿z方向的力平衡方程(见图2.2):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_06.jpg?sign=1739389557-bBdVkKq1fq5quQLHGBn7TaGbIr7hmzDi-0-948d8064a6b5a56148be9268b011f7f1)
计算截面Sx的单位长度上作用的绕y轴的弯矩My和绕x轴的转矩Myx,以及截面Sy的单位长度上作用的绕x轴的弯矩Mx和绕y轴的转矩Mxy,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_07.jpg?sign=1739389557-mVnOuc3mQ1WZN1q5fsfldzQZSdKvjvkg-0-f1f8f1f78f060f79c30550ae35c43053)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_08.jpg?sign=1739389557-5BbIvJcFVGLdicRmGR3c3Z863vjeSIY0-0-aa5ea7b39dfc0fde24cc7b0faa32d960)
图2.2 微元体沿z方向的力平衡
式中,D为板的抗弯刚度:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_09.jpg?sign=1739389557-U10NyLqceEIQkWqJfRvni8IbFH8vNIzP-0-82be120a1b1bc8c7ae614cbc53b0ff7b)
忽略截面转动的惯性力矩,列写微元体绕y轴的力矩平衡条件(见图2.3):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_10.jpg?sign=1739389557-iTFCbiSehTdIEi9W3lEkRHFSLjUgvDyk-0-e386a203edd03ae56299952675ff9082)
略去dx、dy的三次项,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_11.jpg?sign=1739389557-g3pXIcxRLB4Mf5R4gRNwOc9NJDcaMItk-0-b3387586a5deffcfa6b8960dd94e36ad)
与此类似,从微元体绕x轴的力矩平衡条件导出(见图2.4)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_12.jpg?sign=1739389557-qCylExJJEtzlER7l50uMuTKbft9jiWLZ-0-861a8130edc4f099e6b272adbb2077b9)
将式(2-62)、式(2-63)代入式(2-58),得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_13.jpg?sign=1739389557-EhSwoBc5Y7zILU9XPi9yrkILF6Z6MRlm-0-55d3ac3e25880038aa76a4e9cc3ad329)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_01.jpg?sign=1739389557-Si88JtQAvHpFezKI8l9hVV1cBBTNh03O-0-32fb51439785256a58729dac14fb28c9)
图2.3 微元体绕y轴的力矩平衡
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_02.jpg?sign=1739389557-3uG38LjTeAeKS56XjhOe1ayuyAldemEi-0-103bd20d3cb331e066b38d6f80d869af)
图2.4 微元体绕x轴的力矩平衡
将式(2-59)代入后,利用二重拉普拉斯算子得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_03.jpg?sign=1739389557-mO9sHLfC0FQYaNiTyBpQcVg1XPliERnk-0-40025bbed495a1c44438ab0ab1e2cba8)
导出薄板的振动方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_04.jpg?sign=1739389557-7aMjR2lD5Rs1tYTxxh3T1kSnP6Gjg30a-0-e529cdadeaa7db40af4b15f0edbad8de)
2.2.2 圆环的振动
本节研究的圆环,假定为等截面的而且截面尺寸和环中心线半径相比要小得多,同时截面在振动过程中仍然保持平面。选择圆柱坐标系Rθz,圆环在振动中除了扩张振动之外,还有扭转振动,如图2.5所示。设其绕轴线的转角为ψ,于是截面上各点有三个方向的位移,设其沿R、θ、z方向的位移为u、v、w。现以轴线(截面中心线)上各点的位移为u、v、w,绕轴线的转角为ψ,略去高阶微量,则环上任意点a(R,θ,z)的位移将为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_05.jpg?sign=1739389557-gfLgSRkmboZ1r6AsuSuR4bRqYZ1jcHh4-0-cebad9bfde27075d2e78b10b507b991f)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_06.jpg?sign=1739389557-5o3UfWFzJnmhe0qygTvi4b4dlRMX02Bw-0-8f92b5558352755830789c653f9817de)
图2.5 圆环的振动
根据小变形情况下圆柱坐标系中的柯西方程,截面上各点应变和应力分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_01.jpg?sign=1739389557-rTfMo5RlhnUxeNDVMcV84XZCTNEOvhBP-0-cbff3ba9c0f8ae670317510469f77585)
上述关于剪切变形只限于平面假设,因此只能适用于圆截面的圆环,以下只讨论圆截面的圆环。圆环的势能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_02.jpg?sign=1739389557-CqPyMKiw2eYGUyBflRXDpTrHW6HnVcZT-0-f942fbd1413ed629953399c7ddc06b7a)
式中,A为圆环截面积;Jz、Jr分别为截面对于通过形心而分别平行于z轴和R轴的轴线的惯性矩;JP为圆截面的极惯性矩。
动能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_03.jpg?sign=1739389557-pwxkAly1TIUi7ZKEM27N8IpDKgx5sIqB-0-3a1b6737d8b30950d8a90ff3019545a2)
式中,、
、
分别为圆环上任意一点a(R,θ,z)在u、v、w三个方向上的速度,且
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_07.jpg?sign=1739389557-fXS9U4VQw55Y0CyNSW1Ii1NMw5yph247-0-0da4211afcad6e4932a2a905c3a5db67)
在动能和势能表达式中可以发现,u、v和w、ψ之间不发生耦合,因此可将圆环振动分解为环面内的振动和环面外的振动。
1.环面内的振动
变分方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_08.jpg?sign=1739389557-H4GiYfYDlmYfKQtRMWBGYK0XVgPUQWLw-0-b2283ccb9fe05a840b557e3c0d9abfe1)
讨论环面内的振动时,在动能和势能表达式中令w=ψ=0,然后将其代入变分方程式(2-72),经过变分运算,并考虑δu、δv的任意性,略去小量得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_09.jpg?sign=1739389557-0tFz7kZ17fq4ccBLHkKUYzeMlaRCNFPj-0-be4b556175506d4b9e2a28f21a6a4b8e)
此方程包括圆环在环面内的伸缩和弯曲振动,由于Jz=Ar2,要使弯曲振动的有关项和伸缩振动的有关项同量级,则由εθ=+
,可得u=-
。根据这个关系,假设
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_13.jpg?sign=1739389557-QBGQFH02HrvUQb1K3EKWs8JqsLkaFHOn-0-c2a99b0d474525cdc318398a68722d25)
将式(2-74)代入式(2-73),可求得圆环在环平面内弯曲振动频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_01.jpg?sign=1739389557-6puRcBb8m8EMSar1CdNJL3LLx283JrDN-0-fb9c4189ded49af065519d06d525fd97)
当n=0时,p0=0,u0=0,v0=B0,是圆环的刚体转动。
当n=1时,p1=0,u=-A1cosθ+B1sinθ,v=A1sinθ+B1cosθ,是圆环的刚体平动。
考虑到Jz=Ar2,将式(2-73)进一步简化,便得到圆环的伸缩振动方程:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_02.jpg?sign=1739389557-cr8DlTfdrApEsTLPhDT7lPasbYPzc34q-0-45f8cfbf9278aacd638cbacbea80a2c1)
此时设圆环做波数为n的伸缩振动的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_03.jpg?sign=1739389557-gIAAKwSbVkll1ROgZ68t91K5S4sbe2s0-0-5818d01320073e9f6499e498d773ef28)
将式(2-77)代入式(2-76)可解得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_04.jpg?sign=1739389557-9SojSVYpcoOAua0UnJB2JqNkCEEL2ByL-0-1f4935e37a888f43f75bcbee6702029d)
当n=0时,圆环切向位移为零,只做均匀的径向振动。
2.圆环的扭转振动和面外弯曲振动
在动能及势能表达式中令u=v=0,然后代入变分方程式(2-72)中,经过变分运算,并考虑δw和δψ,得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_05.jpg?sign=1739389557-8rpOizesjyZQstE0C01HuPFV67wCQjZr-0-9a3c7d6dcf57288a91d132a21879f34f)
以上两个方程彼此之间发生耦合,即面内弯曲振动与扭转振动是互相耦合的,现设其振动时的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_06.jpg?sign=1739389557-IxhVhZLCgDQaXOmQ4PxqPwXJOSxb2jc5-0-31e90440cb70d074b41bb875200d77b1)
将式(2-80)代入式(2-79),并考虑到Jz=Ar2,得到频率方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_07.jpg?sign=1739389557-xW0yyW1HNToGsGa5LiSm5JpVgjaKRtWY-0-ea5898187c9e43df73eba5d98de9aa35)
所以有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_08.jpg?sign=1739389557-KXz3qhNKgHBJNCTSxTaAgQ4usCAgtzC9-0-81482efd1ccdc9f351e166ce0e3f4372)
式(2-82)中,由于根号中的后一项比前一项小得多,所以根号取正值或取负值时,频率值的差值较大。频率中较高的一类是常说的扭转振动,低的一类是弯曲振动。对于扭转振动,其频率值为根号取正值,即
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_09.jpg?sign=1739389557-IUECZZYw9pBnXd6aV7078A2TU4QRVb4B-0-485d8d7c8ad0c5a76eede2e2e0f9eae4)
当n=0时,有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_01.jpg?sign=1739389557-ajzelQpEk75BROtFFS1miFh0xiqd9d65-0-5984ed29ebfc3864dfb25b19fa5a2f1a)
相应的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_02.jpg?sign=1739389557-uacIv1UXPBHHXrsd0dA0k1hDU7bMD6aY-0-3002ce180d8b0f3ef40390c8c9261a7f)
和伸缩振动频率相比,扭转振动的基频低于伸缩振动的基频。
对于弯曲振动,即根号前取负号,可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_03.jpg?sign=1739389557-oq34k2xqrObiz7GyvbMxq85kbK4QcK6n-0-55b3df1d2f3acc8b358d81575a5c6dd8)
式中,ν为泊松系数。
与前面的讨论比较可以看出,面内弯曲振动的频率和面外弯曲振动的频率是相当接近的。
2.2.3 圆柱壳体的振动
对于半径为R、长为L的圆柱壳体(见图2.6),取图中的圆柱坐标系(x,θ,z),其中x、θ、z分别表示轴向、切向和径向,R、h、L分别为圆柱壳体的中面半径、轴向长度和厚度,u、v、w分别为轴向、切向和径向的位移。
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_04.jpg?sign=1739389557-lQHVHjZHiam2uwmMkv7Jj0akd4PgSm6N-0-ad2fbf0736dab1132d0df0ec6bb25eae)
图2.6 圆柱壳体的圆柱坐标
若壳体中曲面上的一点P的轴向、切向、法向位移分别为u、v、w,则中面应变与中面位移之间的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_05.jpg?sign=1739389557-0nLNXorIDC6j670NXG2rhxiT9HdMVAJ4-0-734e8f8a4a722404096a3362055a97eb)
式中,ε为薄膜应变分量;χ为弯曲应变分量。
内力与圆柱壳中面应变的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_06.jpg?sign=1739389557-IYZKgtSWgU98klStWIPEot8p5b1O4LXD-0-550aceb811b786aba338933a416e9934)
式中,N为单位长度薄膜力;M为单位长度力矩。
薄膜刚度K和弯曲刚度D分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_01.jpg?sign=1739389557-R2rmH4wGVZO3ley9Ol4v2BYrBlzuLYSZ-0-d0047c8a23abf6ef989f619e4e69410a)
圆柱壳体的一般性内力动平衡方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_02.jpg?sign=1739389557-lIS8CTuBLyIDwsEXfGA9bOgy3UKlVkLv-0-247b315977a47149f74f742035e78e8d)
式中,剪力表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_03.jpg?sign=1739389557-FjzEKxkaeJcvTVFuExfpRqpBXKUamefC-0-020f55eff3bfe5f5d329b65394ffa76a)
将式(2-87)代入式(2-88),再代入式(2-90),即可得剪力以中面位移分量表示的圆柱壳体的基本微分方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_04.jpg?sign=1739389557-j9NwFT3k5kb6gy14IG728g2fbRcpd9Bk-0-dc980abdba89058dab11aa0d09eb0ed1)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_05.jpg?sign=1739389557-ncK7g5o9veygP1KQXM5cRXmir4PhCAFo-0-032d8eb03a64143251705d85312209f9)
在电机的振动噪声分析中常见的是两端简支的有限长圆柱壳体(见图2.7)的振动,即圆柱壳体端部边界各点的法向和切向移动是约束的,转动和轴向移动是自由的。对于两端简支的圆柱壳体,其振型边界条件为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_06.jpg?sign=1739389557-XvhOzKXiOq9D17oKEXzQcma5qsGBgYmU-0-b101a1e6a6c7959716d4e73da0962d2c)
式中,凡带*者均为响应力学量的振型。
设满足全部边界条件[式(2-94)]的圆柱壳体非轴对称振动的位移振型解为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_07.jpg?sign=1739389557-sMeXRyV16JIaI2clQ0t0QxYTzfimT2Gn-0-5ae57c2f7bef9b464edc5f051244f338)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_08.jpg?sign=1739389557-CNd5DuVZTkOors1HMGPBDz8jPWaAZO4i-0-19651f45e7f5427e77d4920f0bb280ad)
图2.7 两端简支的圆柱壳体
由于自由振动的圆柱壳体轴向、切向及径向的面压力均为零,即qx=qθ=qz=0,将上述位移振型解代入圆柱壳体的一般性内力动平衡方程,可得如下齐次线性代数方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_01.jpg?sign=1739389557-yKkQ1azkVJJQWqkLr9xKmn2ZoaJxNPWg-0-7e6282ec59c665f8dd7331dac78d8158)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_02.jpg?sign=1739389557-fAOM8ntOCsWvXlalEfxwheqTmXeKx086-0-323436de1b239cb63d104696a56fb687)
为求得振型的非零解,必有式(2-96)的系数行列式为零,展开可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_03.jpg?sign=1739389557-qMZtmZOyCe8Dq649D0ioT8ZX6LdsqMvm-0-3b14b015063c3dfe6e81cfba09d45329)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_04.jpg?sign=1739389557-ux2HkyGnh7eBR4uptSiciNFsMjb3iEKY-0-d3bd97ddf8d75b44eeab4339967eb2bb)
式(2-98)即为两端简支圆柱壳体的频率方程,求得频率系数Ω2的三个根为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_05.jpg?sign=1739389557-HGeuqBRy8IZ1GZP0gARbaO39MMs8lhM7-0-6f9dea44c6b75f1c9384f565ef75fb67)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_06.jpg?sign=1739389557-uHgp6NtHAXpMdOBHs8r7OzducBT8SyVc-0-cb3c70405656432104a7f93503323556)
从而解得固有频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_07.jpg?sign=1739389557-jhRsVoRlkmqWDLrtoTCHH5sLuiMrjnF9-0-615a4c01530534ef108006e5a9a9c8b9)
式中,ωi,mn的下标m、n代表响应振型沿轴向有m个半波,沿周向有n个半波。对应一组(m,n),有三个频率(i=1,2,3),代表U、V、W间比值不同,但均有m个轴向半波和n个周向半波。三个频率中最低一个相应于振型中W为主,其他两个频率值要高过一个量级,相应于U、V为主。对应每一个ωi,mn或Ωi,mn,从式(2-96)中可求得一组振型比,例如取c=1,则由前两个方程可解出
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_01.jpg?sign=1739389557-i1dy9udyws4777BTV4DHfLtPopWa6KT5-0-83aaace83b47ecfd19efb4bb8e05b225)
因此与ωi,mn相应的位移振型为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_02.jpg?sign=1739389557-GJEGImeusvY1A8JEYIEjyKI8lc77otVZ-0-d4737aa4131b4bc35fd299b9e517f0f0)