![五年制高职数学(第二册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/608/31729608/b_31729608.jpg)
6.3 向量的数量积及其运算法则
本节重点知识:
1.向量的数量积.
2.向量数量积的坐标运算.
6.3.1 向量的数量积
在物理学中,一个物体在力的作用下,产生位移
,若
与
之间的夹角为θ,则
所作的功W是
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029017.jpg?sign=1739199105-AiczTVBijRMkqxkMU47zUmL9ZIFXw8xu-0-b491bda9873d643b3336ab70398ecce6)
这里功W是一个数量,它由向量和
的模及其夹角余弦的乘积来确定.像这样由两个向量的模及其夹角余弦的乘积确定一个数量的情况,在其他一些问题中也会遇到,如物理学中的功率
等.
若将两个非零向量,
,设为
则把射线OA与射线OB所组成的不大于π的角称做
与
的夹角,记做
显然
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029027.jpg?sign=1739199105-4XCF3keY2ic7A3WvAFdmIxsPqvTaAi2r-0-82e86a93054a06c1cf71620f7c9fba00)
在数学中,我们将两个非零向量的模与它们的夹角θ的余弦的乘积定义为
与
的数量积(又称做内积),记做
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029031.jpg?sign=1739199105-0sQA72nOQcTyCz0aG0YC3SA3Q493mvbj-0-232ef343d4727b624f0dd3139521f7c6)
其中θ表示
从而也可以表示成
注意 两个向量数量积的结果是一个实数,可能是正数,可能是负数,也可能是零.
想一想
如果 是两个非零向量,那么在什么条件下有以下结论:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030004.jpg?sign=1739199105-F5LIemCaThBqRXWpNfNZHKmZNxvI1MtJ-0-6d3027552fa24ba4d03cd3db98b1673f)
练一练
(1)如果 ,那么
_________;
(2)如果 ,那么
_________.
例1 根据下列条件分别求出
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030010.jpg?sign=1739199105-Qmfl4JOgaQL3nolDihd6MLnmaET5axCM-0-753277c026f493cec570eb41a9a5c089)
解 (1)因为
将已知条件代入,得
所以
又因为
所以
(2)因为
将已知条件代入,得
所以
又因为
所以
向量的数量积运算满足交换律和分配律,即
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030021.jpg?sign=1739199105-hM4exICIcPLiLxop5fbDPAnCnf1nifVA-0-4d232505152bd1660b93883af44736bf)
但它不满足结合律,即
当实数与向量相乘时,满足结合律,即
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031001.jpg?sign=1739199105-87C9PJIgCcpQCCR111UjQXLiWIkYZ5Xw-0-0b42ef2d0f3b59e9d1214f38cc935ee7)
例2 已知计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031003.jpg?sign=1739199105-9AavY2nBZvp8MV7B5Ysdy2v5whBqzo7R-0-3f44833e1ffc25c759c7a4b677814f68)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031004.jpg?sign=1739199105-eLMuRpgf8Z6o3Gm25akwJ7XzNukpNJzY-0-485336900dd1bf32a4e00546d6f91e72)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031005.jpg?sign=1739199105-GVRKe090n4fi8i0Xl40R882iu0JK5Bhc-0-8a2f4d26eb29390982c4e2829651121c)
练习
1.已知分别是平面直角坐标系中x轴和y轴上的单位向量,分别计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031007.jpg?sign=1739199105-PBnD1h9wwewTWYFOS44UX5Fq0HOTul3U-0-b5d563a663730e9bdef768fc25584d48)
2.根据下列条件,求:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031009.jpg?sign=1739199105-l1EA1xUaRF0D52Nm8hoUvxbmXRgpRK1L-0-da519b829f0ee23142660584cb6cf090)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031010.jpg?sign=1739199105-vgTw2lQ346AOiYIG8Z22jBobIly3BWzv-0-5bb47facfc2b59e8dedbc125207fff51)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031011.jpg?sign=1739199105-00AwrcuKSf4mR2gZLWIWFFe3F4tjsqr3-0-491ac95f3ed5281ce2ca1e86d60a557c)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031012.jpg?sign=1739199105-WQoTv9RWhfj5oID6frlMQIEGBTsOcZcw-0-29feaff1b4eed6ff0c7618b5c5891fe8)
3.已知求
4.已知计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031016.jpg?sign=1739199105-GOOvPj6kI7Fd5jdQGoGB14HgGxF1Obq7-0-06ae491e65fee28f96839189f4abc1d7)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031017.jpg?sign=1739199105-BHRIJf4rVVtUHxsvFwUtC0mDvyZnfnLE-0-f84077b2111cee069cee8e1b167c1422)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031018.jpg?sign=1739199105-0IRwhdOAi6bfQMwtXIiNfyVmhJRRccF2-0-888bec972e5632e3f38dd1a2ab0864d6)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031019.jpg?sign=1739199105-t6VUC1WgVxajrskrckbiQhhbNT2JJht2-0-e355e896cc13c7f222241a2d11baad51)
6.3.2 向量数量积的坐标运算
设向量的坐标为(x1,y1),即
向量
的坐标为(x2,y2)即
则
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031026.jpg?sign=1739199105-KgxNIxRo3xD9iGcCyifnmdnN3bztcSIP-0-01c8ac11ae261a93f999007d2386b1ff)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031027.jpg?sign=1739199105-uZhHvrUhNprZYYOwLAfjbnxpCBxv4zI2-0-f2499fa2dbe5cdb3dfbccdc0ae1f2ccc)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031028.jpg?sign=1739199105-TRFOfLJoEAcHtUwIjx8NNFYbbXwSnW8C-0-67ff7b8f4ccdb046dc004f1b8008fd48)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032001.jpg?sign=1739199105-gR5FwrlRy1wBp9ghrLVtPwvum2PyCJOL-0-6eacbef1f1603b397a4722ffd83f5ce1)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032002.jpg?sign=1739199105-fMTHaFrp3NcVTPz4sepPQTQW1gfufVlS-0-0ea1f581e8a7545433754816f73346e2)
所以
就是说,在直角坐标系中,两个向量的数量积等于它们的横坐标之积与纵坐标之积的和.
例1 已知求
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1739199105-6SOBtDIjdcYSILy75aJqccV0PjLUnvjb-0-c055a9f0de12dba44f9ccf07c111f20d)
当两个向量垂直时,夹角为,此时有
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032008.jpg?sign=1739199105-sgmWv7lVB5ZY77cmu16q1LmUdIxHGhLe-0-222d7fbafbb6f5976ad269f35f3ed819)
反之,若非零向量的数量积为0,即
则必然有cosθ=0,即
故有
如果则有
例2 判断下列各题中的向量与
是否垂直:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032017.jpg?sign=1739199105-IygrIDgFaqJdxo8l1SIY9yWGykGtHZno-0-155b8e803348a3f44f4f5b5a3858bb95)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032018.jpg?sign=1739199105-0zAvZvsnW5Dprtg0DLnmwwUrCHqkuTnt-0-f89c5bfc0df5a8062cb75ed89e6144ba)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032019.jpg?sign=1739199105-2uTV0owILXyytGU68Yi0TAeXqKlysyMS-0-37e530df2b5e266ec0e220a4193aeed4)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032020.jpg?sign=1739199105-hJ6MKX8xlZGIUvxBtKu7FzG7D7juUmHU-0-83c60f05beb70e610ffea0e3bf452a27)
所以 与
不垂直.
如果那么
所以
就是说,利用向量坐标,我们可以计算出它的模.
练一练
算出下列各向量的模:
(1)若 ,则
(2)若 则
(3)若 则
如果点A坐标为(x1,y1),点B坐标为(x2,y2)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1739199105-vRAcEC6tx79kAHeQ8Jr4VvBW3zNZr9PP-0-c79612bb0fc614f8a2d085843ae5164e)
于是向量的模
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1739199105-ooIJxXNXGub5REhOdnTwkgtynQMReUDX-0-5253d436821dcb3552a08296ec71ee29)
由于的模就是点A和点B的距离,所以我们得到平面上两点间的距离公式
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1739199105-dL2KZOtz3Hnx7KsScc0KLayhCPwNhIEd-0-74db672a4143cce4834646bbe28c85ad)
例3 已知A(8,-1),B(2,7),求.
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033007.jpg?sign=1739199105-034LV5DxLPvqFgdetGH1GFH5igKhKSSq-0-14c8691e4c94d0c2fe5d9b488f21d9ba)
例4 已知点A(-3,-7),B(-1,-1),C(2,-2),求证:△ABC是直角三角形.
分析 可以通过判断某两边互相垂直,证得△ABC是直角三角形;也可以利用勾股定理的逆定理证得结论.
证法1:根据已知,得
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1739199105-9c9VOS3gYrTHAMicqap1JfqmKY0TgrKt-0-cb9edbf4ceab3a8b6a684cb64809d741)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1739199105-kZeeVtw0Fa23FEuuSLzd5M9fWySKCW98-0-62b266a7f1864050bd67f93d4c9d96c2)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1739199105-1ZvRwF8065SwEL5SIJgib1SVDqbw1vSO-0-5f8de4dcf2bbacfc8532ef2b90dca1ff)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1739199105-T4GVz8m8yWtZru3LpKdCU94ch0Ptf7tp-0-888f15d74396543fd5b756ea5c949dee)
即∠ABC=90°.所以△ABC是直角三角形.
证法2:根据已知,得
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033012.jpg?sign=1739199105-1Z42BjI2QnaKgSqzy1kcPTFacnNAcMxA-0-2505648333878577a41d7d67954e7ede)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033013.jpg?sign=1739199105-n79gP0xDPxF6w1T4ieuqnVtnNIwQ2jFH-0-3d044adbe653a16a9f31de1168506ea3)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033014.jpg?sign=1739199105-bIU2ayUFNqTAd8MIDz9KMYb1ZFOaxrcW-0-11c0e27d49c9d9a90992297487b59276)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033015.jpg?sign=1739199105-mFlHFw6GxHr0OLrbMn0pCWK5gkrOprx6-0-88798e7f8cee71893decfc12f2a9b97f)
即 CA2=AB2+BC2.所以△ABC是直角三角形.
练习
1.求的值,当:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033018.jpg?sign=1739199105-epmeLnb0pEVfmKsOEtsx6EsDePQoAK2N-0-cb79eddbb2dc18c15df54aa4b8635cbf)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033019.jpg?sign=1739199105-ZQkjIORuIksgdqHD6TLp9jefvyzipAHK-0-b2b8e29b5ff46c0e5d02cc013d81bf53)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033020.jpg?sign=1739199105-j8HyyQHB2kdglrwA6VN7EZ35FzfW6Av3-0-7ff44a3ca53d5ec5256c3c0661596040)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033021.jpg?sign=1739199105-VLlOh1l1Y5dJBEfbflu9oTl7IYxRNevW-0-70953f1ab906ef681f4f077364e7ec11)
2.已知M(6,4),N(1,-8),求
3.已知A(-4,7),B(5,-5),求