![欧阳光中《数学分析》(上册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/599/27032599/b_27032599.jpg)
第6章 导数和微分
1.设f(x)在[-1,1]上有二阶连续偏导数,f(0)=0,令
,
证明:
(1)g(x)在x=0处连续且可导,并计算g'(0);
(2)g'(0)在x=0处也连续。[南京大学、复旦大学、南京理工大学、中北大学研、上海理工大学、华东师范大学2006研]
证明:(1)由于
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image455.jpg?sign=1738965567-1uSPT0D7fKyLKWv0sog7NW6oFn2cna0l-0-150dfbc502497328971688b064dd2dc1)
并由L’Hospital法则知
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image456.jpg?sign=1738965567-e7LlmGNI0cQ8ueKUVPqrdW10CooIh4I7-0-d604cabd89ab570333cc9562853c4c78)
所以,g(x)在x=0处连续且可导,
(2)由于
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image458.jpg?sign=1738965567-audXbJkdYZYLJcAsPwybFQWNCWX4aoAb-0-1f2743d5e3aaeda410e9efc9e8fd6781)
所以由L’Hospital法则知
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image459.jpg?sign=1738965567-j5R1oud949UubD05d12RV6QVNwMj8IOf-0-87dd0900ba7c4b1a42c456ba64c2481a)
故g'(x)在x=0处也连续。
2.问函数,在x=0处最高能有多少阶导数?这个导数值是多少,并给出证明。[中北大学研]
解:当x≠0时,有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image461.jpg?sign=1738965567-uS274oemqTvXBputiwi3QIBfyAlqABWc-0-8a5418a503a8293823d45e289c57e2db)
所以
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image462.jpg?sign=1738965567-TTY2HTJ92EONlyhwh5PB7PX90t0VI2uB-0-cd493297b4dc0a552a23c437e815a6d1)
但不存在,故在x=0处,最高能有二阶导数,且
3.设f(x)是定义在R上的函数,且对任意的,都有
。若f'(0)=1,证明:对任意的x∈R,都有
。[江苏大学2006研]
证明:在中令
,有
。又由
知,f(x)不恒为零,故有f(0)=1。由导数的定义和
可得
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image473.jpg?sign=1738965567-cHo3Dcp4muqGeEGwJYtwSsXXCfd4uPZ0-0-daeeab75ac06c5cf9bc3ba6e59a6ee17)
4.设,求
.[华南理工大学、南京师范大学研]
解:对方程两边关于x求导可得,所以
对上述的一阶导数表达式
两边再关于x求导得,代入
的表达式,得
。
5.设y=y(x)由等式确定,求
.[中国地质大学2006研]
解:,因为方程组中第二个方程是y关于t的一个隐函数,则对第二个方程关于t求导可得
,所以
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image485.jpg?sign=1738965567-0fv54k7lqBlRui7moY8falxdeigqra4S-0-d0d06507dc08b38e45b93efa12ea9d1a)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image486.jpg?sign=1738965567-QK1thP6muCqt0cn1RqxH4RvC9Q3fM654-0-912da5a1fc1e4c9be7f57991e403912c)
下求.
当t=0时,易知y(0)=-1,,于是
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image489.jpg?sign=1738965567-5uYac9vGMctq3K4zjPtyotoJAqc0A8Yt-0-0417644383db4f4248343447d3379079)
故有.
6.设求
[华东师范大学研]
解:
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image493.jpg?sign=1738965567-rGnvCKK7J4z0SIgQHISs6Vs8Iv6kA79D-0-3988d974728a38857f0a3c41cf3ecbab)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image494.jpg?sign=1738965567-W0pIO3bEQ7OH4yzeRilxFdKU5Bn6hp1X-0-5cdb30ef5d8cd513075d35ec0647e09b)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image495.jpg?sign=1738965567-kyvHENQIe3phpYIL4SW7SPOMJOp08wJ5-0-e71479b2e3d8d7abb85255afed73ff6c)
k为奇数时,k为偶数时,
.
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image498.jpg?sign=1738965567-cAuNseZnkzjfm0XQTfF2lE9qLFRGsqPj-0-07a915056a01fb0bd5b628fc05a50e0c)
7.求出函数的导函数f'(x),讨论f'(x)的连续性(若有间断点,须指出其类别).[内蒙古大学研]
解:当x≠0时
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image500.jpg?sign=1738965567-9LqSRFQkuIciNTq7dafs6HpVhoCOuwhY-0-a9f035b16a143546f2be1f8a39a6d0ff)
不存在.
不存在,因此x=0是f'(x)的惟一间断点,它是第二类间断点.
8.椭圆上任意两点联结成的线段,称为此椭圆的弦.证明:椭图的任意两条平行弦之中点联线必经过原点(即椭圆中心).[上海化工学院研]
证明:设两条平行弦分别为AB与CD,这4点的坐标分别为
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image504.jpg?sign=1738965567-fiVMOH2eidkClERhp6RVrfqKx6QQcBQL-0-45b839b93577d8d32c1c65eecac3168c)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image505.jpg?sign=1738965567-KnF9Y52giBEq6bdQO46kNjsxzWExpheV-0-170433e369daa278a2835e686256c6ec)
(1)若AB与CD都平行于x轴(或y轴),则结论显然成立.
(2)若AB、CD的斜率都是k∈(0,+∞),则
两弦AB与CD两弦中点分别为.再设EO和FO的斜率分别为
,则
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image510.jpg?sign=1738965567-16eun3Ix7DAGzDLLYu5wPQeDoxsrZEFa-0-bc7050f0050e7706ae238212f3fb53e3)
①
由于在椭圆上,所以
②
③
将②,③代入①得
④
类似可得
⑤
由④,⑤得,从而E、O、F在一条直线上,即两弦中点联线过原点.